Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 799-811, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38545978

RESUMO

Pseudouridine is the most abundant modified nucleoside found in non-coding RNA and is widely used in biological and pharmaceutical fields. However, current methods for pseudouridine production suffer from drawbacks such as complex procedures, low efficiency and high costs. This study presents a novel enzymatic cascade reaction route in Escherichia coli, enabling the whole-cell catalytic synthesis of pseudouridine from uridine. Initially, a metabolic pathway was established through plasmid-mediated overexpression of endogenous pseudouridine-5-phosphase glycosidase, ribokinase, and ribonucleoside hydrolase, resulting in the accumulation of pseudouridine. Subsequently, highly active endogenous ribonucleoside hydrolase was screened to enhance uridine hydrolysis and provide more precursors for pseudouridine synthesis. Furthermore, modifications were made to the substrates and products transport pathways to increase the pseudouridine yield while avoiding the accumulation of by-product uridine. The resulting recombinant strain Ψ-7 catalyzed the conversion of 30 g/L uridine into 27.24 g/L pseudouridine in 24 h, achieving a conversion rate of 90.8% and a production efficiency of 1.135 g/(L·h). These values represent the highest reported yield and production efficiency achieved by enzymatic catalysis methods to date.


Assuntos
Escherichia coli , Pseudouridina , Pseudouridina/genética , Pseudouridina/química , Pseudouridina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Uridina/genética , Uridina/química , Uridina/metabolismo , Catálise , Hidrolases/metabolismo
2.
Huan Jing Ke Xue ; 45(3): 1760-1768, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471887

RESUMO

In order to explore the status of soil heavy metal pollution and environmental quality in west Hunan, relevant areas of Phoenix County were selected as the study area. Using data from 440 soil samples collected in the study area from June to August 2022, the pH value of the soil and contents of eight heavy metal elements, namely, As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, were analyzed. The PMF model was used for traceability analysis and geochemical evaluation of soil environmental quality. The results showed that the average values of soil heavy metals ω(Zn), ω(Cr), ω(Pb), ω(Ni), ω(Cu), ω(As), ω(Cd), and ω(Hg) were 81.02, 64.67, 31.63, 29.27, 25.52, 9.93, 0.28, and 0.13 mg·kg-1, respectively. The soil in the study area was mainly weakly acidic, and the contents of the Cd and Hg elements were relatively high compared to the national soil background values and were highly variable. The contents of the Hg and Cd elements in forest land were higher than that in other land uses. The PMF model results showed that the contribution rates of heavy metal pollution sources in the study area were mining sources (37.4%), atmospheric sedimentation sources (7.7%), natural sources (41.1%), and agricultural activity sources (13.8%) and provided suggestions on pollution control measures according to the spatial distribution of the four types of pollution sources. Through the comprehensive assessment of soil environmental geochemistry, the study area was divided into three types of plots, namely, non-risk areas (94.27 km2), accounting for 76.38%; risk-controllable areas (27.45 km2), accounting for 22.24%; and high-risk areas (1.7 km2), accounting for 1.38%. This study provided data support for the prevention and control measures of land pollution in the research area, as well as the delineation of the prevention and control scope.

3.
Microb Cell Fact ; 22(1): 240, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986164

RESUMO

BACKGROUND: trans-4-Hydroxyproline (T-4-HYP) is a promising intermediate in the synthesis of antibiotic drugs. However, its industrial production remains challenging due to the low production efficiency of T-4-HYP. This study focused on designing the key nodes of anabolic pathway to enhance carbon flux and minimize carbon loss, thereby maximizing the production potential of microbial cell factories. RESULTS: First, a basic strain, HYP-1, was developed by releasing feedback inhibitors and expressing heterologous genes for the production of trans-4-hydroxyproline. Subsequently, the biosynthetic pathway was strengthened while branching pathways were disrupted, resulting in increased metabolic flow of α-ketoglutarate in the Tricarboxylic acid cycle. The introduction of the NOG (non-oxidative glycolysis) pathway rearranged the central carbon metabolism, redirecting glucose towards acetyl-CoA. Furthermore, the supply of NADPH was enhanced to improve the acid production capacity of the strain. Finally, the fermentation process of T-4-HYP was optimized using a continuous feeding method. The rate of sugar supplementation controlled the dissolved oxygen concentrations during fermentation, and Fe2+ was continuously fed to supplement the reduced iron for hydroxylation. These modifications ensured an effective supply of proline hydroxylase cofactors (O2 and Fe2+), enabling efficient production of T-4-HYP in the microbial cell factory system. The strain HYP-10 produced 89.4 g/L of T-4-HYP in a 5 L fermenter, with a total yield of 0.34 g/g, the highest values reported by microbial fermentation, the yield increased by 63.1% compared with the highest existing reported yield. CONCLUSION: This study presents a strategy for establishing a microbial cell factory capable of producing T-4-HYP at high levels, making it suitable for large-scale industrial production. Additionally, this study provides valuable insights into regulating synthesis of other compounds with α-ketoglutaric acid as precursor.


Assuntos
Vias Biossintéticas , Escherichia coli , Hidroxiprolina , Escherichia coli/genética , Escherichia coli/metabolismo , Prolil Hidroxilases/genética , Prolil Hidroxilases/metabolismo , Ciclo do Ácido Cítrico , Engenharia Metabólica/métodos , Carbono/metabolismo
4.
Chin Med ; 18(1): 155, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017536

RESUMO

BACKGROUND: Myocardial ischemia (MI) can cause angina, myocardial infarction, and even death. Angiogenesis is beneficial for ensuring oxygen and blood supply to ischemic tissue, promoting tissue repair, and reducing cell damage. In this study, we evaluated the effects of Salvianolic acid B (Sal B) against myocardial ischemia and explored its underlying mechanism on autophagy. METHODS: The anti-apoptosis effect of Sal B was conducted by staining Annexin V-FITC/PI and Hoechst as well as evaluating apoptosis bio-markers at protein level in H9c2 cells at glucose deprivation condition. HUVECs were co-cultured with H9c2, and the tube formation assay was used to monitor Sal B's impact on angiogenesis. The MI model of mice was induced by intraperitoneal injection of isoproterenol (ISO). The effect of Sal B on MI mice was evaluated by HE, Masson, immunohistochemistry, WB and kits. In addition, Atg5 siRNA was applied to verify whether the protective effect of Sal B was regulated to autophagy. RESULTS: In H9c2, Sal B reduced the levels of lactate dehydrogenase (LDH), malondialdehyde (MDA) and reactive oxygen species (ROS), improved the levels of superoxide dismutase (SOD) and mitochondrial membrane potential, downregulated the expressions of Bax and cleaved-Caspase3, upregulated the expression of Bcl-2. Therefore, Sal B could significantly inhibit the damage of H9c2 caused by glucose deprivation. In the co-culture system of H9c2 and HUVECs, vascular endothelial growth factor (VEGF) level in the supernatant was dramatically raised by Sal B. Sal B upregulated the expressions of VEGF, platelet derived growth factor (PDGF) and endothelial marker CD31. It implied that Sal B exerted a significant pro-angiogenic effect. Moreover, Sal B increased the expression of LC3, Atg5, and Beclin1, while reducing the level of P62. When the expression of Atg5 was inhibited, the protective effects of Sal B on apoptosis and angiogenesis was reversed. CONCLUSIONS: Sal B inhibited cardiomyocyte apoptosis and promoted angiogenesis by regulating autophagy, thereby improving MI.

5.
Foods ; 12(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37835213

RESUMO

Zearalenone and its metabolites are mycotoxins generated by Fusarium species while crops are growing and can typically be found in various foods, posing a risk to human health. Governments have implemented stricter regulations concerning the permissible levels of zearalenone in food products to safeguard public health. Stricter regulations on zearalenone levels in food have been implemented. However, detecting zearalenone and its metabolites remains challenging due to sample complexity and interference. Surprisingly few reviews of sample preparation methods for zearalenone in food have appeared in the past decade. In this overview, we outline the most recent developments in the sample pre-treatment technology of zearalenone and its metabolites in food samples based on chromatography-mass spectrometry methods since 2012. This review covers some prominent technologies, such as liquid-liquid extraction-based methods, solid-phase extraction-based methods, and QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction, providing valuable insights into their advantages and limitations for potential applications. The assessment of the methods discussed, along with an overview of current challenges and prospects, will guide researchers in advancing the field and ensuring safer food quality for consumers worldwide.

6.
Metab Eng ; 78: 128-136, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286072

RESUMO

L-leucine is an essential amino acid widely used in food and pharmaceutical industries. However, the relatively low production efficiency limits its large-scale application. In this study, we rationally developed an efficient L-leucine-producing Escherichia coli strain. Initially, the L-leucine synthesis pathway was enhanced by overexpressing feedback-resistant 2-isopropylmalate synthase and acetohydroxy acid synthase both derived from Corynebacterium glutamicum, along with two other native enzymes. Next, the pyruvate and acetyl-CoA pools were enriched by deleting competitive pathways, employing the nonoxidative glycolysis pathway, and dynamically modulating the citrate synthase activity, which significantly promoted the L-leucine production and yield to 40.69 g/L and 0.30 g/g glucose, respectively. Then, the redox flux was improved by substituting the native NADPH-dependent acetohydroxy acid isomeroreductase, branched chain amino acid transaminase, and glutamate dehydrogenase with their NADH-dependent equivalents. Finally, L-leucine efflux was accelerated by precise overexpression of the exporter and deletion of the transporter. Under fed-batch conditions, the final strain LXH-21 produced 63.29 g/L of L-leucine, with a yield and productivity of 0.37 g/g glucose and 2.64 g/(L h), respectively. To our knowledge, this study achieved the highest production efficiency of L-leucine to date. The strategies presented here will be useful for engineering E. coli strains for producing L-leucine and related products on an industrial scale.


Assuntos
Corynebacterium glutamicum , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Leucina/genética , Leucina/metabolismo , Vias Biossintéticas , Glucose/genética , Glucose/metabolismo , Corynebacterium glutamicum/metabolismo
7.
FASEB J ; 37(7): e23014, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37261736

RESUMO

Parenteral nutrition, received by many patients with intestinal failure, can induce hepatobiliary complications, which is termed as parenteral nutrition-associated liver disease (PNALD). The spectrum of PNALD ranges from cholestasis and steatosis to fibrosis and cirrhosis. Although many factors contribute to the pathogenesis of PNALD, the underlying mechanisms remain unclear. In this study, we performed targeted metabolomics to characterize the metabolomic profile in neonatal piglets receiving total parenteral nutrition (TPN) or enteral nutrition (EN) for 1 or 2 weeks. Overall, the metabolomic signature of TPN groups differed from EN groups at both time points. Among the 20 acylcarnitines identified, a majority of them were significantly reduced in TPN groups. KEGG pathway analysis showed that phenylalanine metabolism-associated pathways were dysregulated accompanied by more progressive liver steatosis associated with TPN. Next, we evaluated phenylalanine catabolism and its association with fatty acid oxidation in piglets and rats with PNALD. We showed that the hepatic expression of phenylalanine-degrading enzyme phenylalanine hydroxylase (PAH) was reduced and systemic phenylalanine levels were increased in both animal models of PNALD. Moreover, carnitine palmitoyltransferase 1A, a central regulator of fatty acid oxidation, was downregulated and its expression was negatively correlated with phenylalanine levels in TPN-fed animals. To explore the effects of phenylalanine accumulation on lipid metabolism, we treated HepG2 cells with phenylalanine co-cultured with sodium palmitate or soybean oil emulsion to induce lipid accumulation. We found that phenylalanine treatment exacerbated lipid accumulation by inhibiting fatty acid oxidation without affecting fatty acid synthesis. In summary, our findings establish a pathogenic role of increased phenylalanine levels in driving liver steatosis, linking dysregulation of phenylalanine catabolism with lipid accumulation in the context of PNALD.


Assuntos
Fígado Gorduroso , Hepatopatias , Animais , Suínos , Ratos , Animais Recém-Nascidos , Nutrição Parenteral Total/efeitos adversos , Fígado/metabolismo , Hepatopatias/patologia , Fígado Gorduroso/metabolismo , Óleo de Soja/efeitos adversos , Óleo de Soja/metabolismo , Ácido Palmítico/farmacologia , Metabolômica
8.
Front Bioeng Biotechnol ; 11: 1181963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200843

RESUMO

Introduction: L-lysine is a bulk product. In industrial production using high-biomass fermentation, the high density of bacteria and the intensity of production require sufficient cellular respiratory metabolism for support. Conventional bioreactors often have difficulty meeting the oxygen supply conditions for this fermentation process, which is not conducive to improving the sugar-amino acid conversion rate. In this study, we designed and developed an oxygen-enhanced bioreactor to address this problem. Methods: This bioreactor optimizes the aeration mix using an internal liquid flow guide and multiple propellers. Results: Compared with a conventional bioreactor, it improved the kLa from 367.57 to 875.64 h-1, an increase of 238.22%. The results show that the oxygen supply capacity of the oxygen-enhanced bioreactor is better than that of the conventional bioreactor. Its oxygenating effect increased the dissolved oxygen in the middle and late stages of fermentation by an average of 20%. The increased viability of Corynebacterium glutamicum LS260 in the mid to late stages of growth resulted in a yield of 185.3 g/L of L-lysine, 74.57% conversion of lysine from glucose, and productivity of 2.57 g/L/h, an increase of 11.0%, 6.01%, and 8.2%, respectively, over a conventional bioreactor. Oxygen vectors can further improve the production performance of lysine strains by increasing the oxygen uptake capacity of microorganisms. We compared the effects of different oxygen vectors on the production of L-lysine from LS260 fermentation and concluded that n-dodecane was the most suitable. Bacterial growth was smoother under these conditions, with a 2.78% increase in bacterial volume, a 6.53% increase in lysine production, and a 5.83% increase in conversion. The different addition times of the oxygen vectors also affected the final yield and conversion, with the addition of oxygen vectors at 0 h, 8 h, 16 h, and 24 h of fermentation increasing the yield by 6.31%, 12.44%, 9.93%, and 7.39%, respectively, compared to fermentation without the addition of oxygen vectors. The conversion rates increased by 5.83%, 8.73%, 7.13%, and 6.13%, respectively. The best results were achieved by adding oxygen vehicles at the 8th hour of fermentation, with a lysine yield of 208.36 g/L and a conversion rate of 83.3%. In addition, n-dodecane significantly reduced the amount of foam produced during fermentation, which is beneficial for fermentation control and equipment. Conclusion: The new oxygen-enhanced bioreactor improves oxygen transfer efficiency, and oxygen vectors enhance the ability of cells to take up oxygen, which effectively solves the problem of insufficient oxygen supply during lysine fermentation. This study provides a new bioreactor and production solution for lysine fermentation.

9.
Huan Jing Ke Xue ; 44(4): 2243-2251, 2023 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-37040973

RESUMO

The naturally high background value region of Cd derived from the weathering of carbonate has received wide attention. Due to the significant difference in soil physicochemical properties, soil Cd content, and bioavailability of different parent materials in the karst area, there are certain limitations in using the total soil Cd content to classify the environmental quality of cultivated land. In this study, surface soil and maize samples of eluvium and alluvial parent material in typical karst areas were collected systematically; the contents of maize Cd, soil Cd, pH, and oxides were analyzed, the Cd geochemical characteristics of different parent soils and the influencing factors of their bioavailability were revealed, and scientific and effective arable land use zoning suggestions based on the prediction model were suggested. The results showed that the physicochemical properties of different parent material soils in the karst area were obviously different. The alluvial parent material soil had low Cd content but high bioavailability, and the maize Cd exceeding rate was high. The maize Cd bioaccumulation factor was significantly negatively correlated with soil CaO, pH, Mn, and TC, and the correlation coefficients were -0.385, -0.620, -0.484, and -0.384, respectively. Compared with the multiple linear regression prediction model, using the random forest model to predict the maize Cd enrichment coefficient had higher accuracy and precision. Furthermore, a new scheme for the safe utilization of cultivated land at the plot scale based on soil Cd and predicted crop Cd content was proposed in this study, making full use of arable land resources to ensure crop safety.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36287176

RESUMO

OBJECTIVE: Provide US FDA and amyotrophic lateral sclerosis (ALS) society with a systematic, transparent, and quantitative framework to evaluate the efficacy of the ALS therapeutic candidate AMX0035 in its phase 2 trial, which showed statistically significant effects (p-value 3%) in slowing the rate of ALS progression on a relatively small sample size of 137 patients. METHODS: We apply Bayesian decision analysis (BDA) to determine the optimal type I error rate (p-value) under which the clinical evidence of AMX0035 supports FDA approval. Using rigorous estimates of ALS disease burden, our BDA framework strikes the optimal balance between FDA's need to limit adverse effects (type I error) and patients' need for expedited access to a potentially effective therapy (type II error). We apply BDA to evaluate long-term patient survival based on clinical evidence from AMX0035 and Riluzole. RESULTS: The BDA-optimal type I error for approving AMX0035 is higher than the 3% p-value reported in the phase 2 trial if the probability of the therapy being effective is at least 30%. Assuming a 50% probability of efficacy and a signal-to-noise ratio of treatment effect between 25% and 50% (benchmark: 33%), the optimal type I error rate ranges from 2.6% to 26.3% (benchmark: 15.4%). The BDA-optimal type I error rate is robust to perturbations in most assumptions except for a probability of efficacy below 5%. CONCLUSION: BDA provides a useful framework to incorporate subjective perspectives of ALS patients and objective burden-of-disease metrics to evaluate the therapeutic effects of AMX0035 in its phase 2 trial.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/tratamento farmacológico , Teorema de Bayes , Preferência do Paciente , Progressão da Doença , Técnicas de Apoio para a Decisão
11.
Front Med (Lausanne) ; 10: 1301440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38404461

RESUMO

Objective: To determine the effectiveness and safety of 5-aminolevulinic acid mediated photodynamic therapy (5-ALA PDT) in HR-HPV infected patients with cervical low-grade squamous intraepithelial lesions (LSIL) and to explore possible factors affecting treatment outcomes. Methods: This retrospective study included 96 patients with histologically confirmed cervical LSIL and high-risk human papillomavirus (HR-HPV) infection. They received 5-ALA PDT treatment once a week for a total of 3 courses. All patients were evaluated by cytology tests, HPV DNA assay, colposcopy, and biopsy at 2 weeks, 3 months, and 6 months checkpoint. The chi-square test were used to evaluate the differences in various clinical data, and a p value <0.05 was considered statistically significant. Results: At 2 weeks, 3 months, and 6 months checkpoint, colposcopies showed that the cervical iodine-unstained area under VILI (visual inspection with Lugol's iodine) significantly reduced (p < 0.01) with no structure changes. At 3 months and 6 months checkpoint, the pathological regression rate reached 87.5% (84/96) and 94.79% (91/96), while the HR-HPV clearance rates reached 80.21% (77/96) and 93.75% (90/96) respectively. We also examined the efficacy in the HPV 16/18-related group and non-HPV 16/18-related group. The HR-HPV clearance rate in the HPV16/18 group [94.87% (37/39)] was significantly higher than that of the non-HPV 16/18 group [70.17% (40/57)]. However, at 6 months after treatment, the clearance rate of the HPV 16/18 group [94.87% (37/39)] showed no statistical difference from the non-HPV 16/18 group [92.30% (53/57)]. Conclusion: Topical 5-ALA PDT can effectively eliminate HR-HPV infection and treat low-grade cervical squamous intraepithelial lesions, it offers an alternative treatment option for patients with LSIL, especially for those with fertility requirements and who wish to preserve cervical structure or function.

12.
Front Genet ; 13: 884037, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186461

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease, associated with an outcome of hepatic fibrosis/cirrhosis and hepatocellular carcinoma. However, limited exploration of the underlying mechanisms hinders its prevention and treatment. To investigate the mechanisms of epigenetic regulation in NAFLD, the expression profile of circular RNA (circRNA) of rodents in which NAFLD was induced by a high-fat, high-cholesterol (HFHC) diet was studied. Modeling of the circRNA-microRNA (miRNA) -mRNA regulatory network revealed the functional characteristics of NAFLD-specific circRNAs. The targets and effects in the liver of such NAFLD-specific circRNAs were further assessed. Our results uncovered that the downregulation of 28 annotated circRNAs characterizes HFHC diet-induced NAFLD. Among the downregulated circRNAs, long intergenic non-protein coding RNA, P53 induced transcript (LNCPINT) -derived circRNAs (circ_0001452, circ_0001453, and circ_0001454) targeted both miR-466i-3p and miR-669c-3p. Their deficiency in NAFLD abrogated the circRNA-based inhibitory effect on both miRNAs, which further inactivated the AMPK signaling pathway via AMPK-α1 suppression. Inhibition of the AMPK signaling pathway promotes hepatic steatosis, depending on the transcriptional and translational upregulation of lipogenic genes, such as those encoding sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FASN) in hepatocytes. The levels of LNCPINT-derived circRNAs displayed a negative association with hepatic triglyceride (TG) concentration. These findings suggest that loss of LNCPINT-derived circRNAs may underlie NAFLD via miR-466i-3p- and miR-669c-3p-dependent inactivation of the AMPK signaling pathway.

13.
Microb Cell Fact ; 21(1): 198, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153615

RESUMO

BACKGROUND: 5-hydroxytryptophan (5-HTP), the direct biosynthetic precursor of the neurotransmitter 5-hydroxytryptamine, has been shown to have unique efficacy in the treatment of a variety of disorders, including depression, insomnia, and chronic headaches, and is one of the most commercially valuable amino acid derivatives. However, microbial fermentation for 5-HTP production continues to face many challenges, including low titer/yield and the presence of the intermediate L-tryptophan (L-Trp), owing to the complexity and low activity of heterologous expression in prokaryotes. Therefore, there is a need to construct an efficient microbial cell factory for 5-HTP production. RESULTS: We describe the systematic modular engineering of wild-type Escherichia coli for the efficient fermentation of 5-HTP from glucose. First, a xylose-induced T7 RNA polymerase-PT7 promoter system was constructed to ensure the efficient expression of each key heterologous pathway in E. coli. Next, a new tryptophan hydroxylase mutant was used to construct an efficient tryptophan hydroxylation module, and the cofactor tetrahydrobiopterin synthesis and regeneration pathway was expressed in combination. The L-Trp synthesis module was constructed by modifying the key metabolic nodes of tryptophan biosynthesis, and the heterologous synthesis of 5-HTP was achieved. Finally, the NAD(P)H regeneration module was constructed by the moderate expression of the heterologous GDHesi pathway, which successfully reduced the surplus of the intermediate L-Trp. The final engineered strain HTP11 was able to produce 8.58 g/L 5-HTP in a 5-L bioreactor with a yield of 0.095 g/g glucose and a maximum real-time productivity of 0.48 g/L/h, the highest values reported by microbial fermentation. CONCLUSION: In this study, we demonstrate the successful design of a cell factory for high-level 5-HTP production, combined with simple processes that have potential for use in industrial applications in the future. Thus, this study provides a reference for the production of high-value amino acid derivatives using a systematic modular engineering strategy and a basis for an efficient engineered strain development of 5-HTP high-value derivatives.


Assuntos
5-Hidroxitriptofano , Engenharia Metabólica , 5-Hidroxitriptofano/genética , 5-Hidroxitriptofano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Glucose/metabolismo , NAD/metabolismo , Neurotransmissores/metabolismo , Serotonina/metabolismo , Triptofano/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Xilose/metabolismo
14.
Sensors (Basel) ; 22(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36146192

RESUMO

Grey wolf optimization (GWO) is a meta-heuristic algorithm inspired by the hierarchy and hunting behavior of grey wolves. GWO has the superiorities of simpler concept and fewer adjustment parameters, and has been widely used in different fields. However, there are some disadvantages in avoiding prematurity and falling into local optimum. This paper presents an improved grey wolf optimization (IGWO) to ameliorate these drawbacks. Firstly, a modified position update mechanism for pursuing high quality solutions is developed. By designing an ameliorative position update formula, a proper balance between the exploration and exploitation is achieved. Moreover, the leadership hierarchy is strengthened by proposing adaptive weights of α, ß and δ. Then, a dynamic local optimum escape strategy is proposed to reinforce the ability of the algorithm to escape from the local stagnations. Finally, some individuals are repositioned with the aid of the positions of the leaders. These individuals are pulled to new positions near the leaders, helping to accelerate the convergence of the algorithm. To verify the effectiveness of IGWO, a series of contrast experiments are conducted. On the one hand, IGWO is compared with some state-of-the-art GWO variants and several promising meta-heuristic algorithms on 20 benchmark functions. Experimental results indicate that IGWO performs better than other competitors. On the other hand, the applicability of IGWO is verified by a robot global path planning problem, and simulation results demonstrate that IGWO can plan shorter and safer paths. Therefore, IGWO is successfully applied to the path planning as a new method.


Assuntos
Robótica , Algoritmos , Benchmarking , Simulação por Computador
15.
Toxicology ; 479: 153297, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36037877

RESUMO

Aristolochic acid I (AA-I), presenting in a variety of natural medicinal plants, which could cause tubular epithelial cell injury. Curcumin (CUR), a polyphenolic substance isolated from turmeric, is a natural antioxidant. The aim of this experiment was to investigate whether CUR attenuated AA-I-induced renal injury in rats through the SIRT1/Nrf2/HO-1 signaling pathway. SD rats were treated with AA-I (10 mg/kg) or/and CUR (200 mg/kg) for 28 days to assess the protective effect of CUR on AA-I-induced renal injury in vivo. NRK-52E cells were treated with AA-I (40 µ M) or/and CUR (20 µ M) for 24 h in vitro. The intervention pathway of CUR against oxidative stress injury induced by AA-I was assessed by observing pathological changes, oxidative stress status, apoptosis and the expression of SIRT1/Nrf2/HO-1 signaling pathway-related factors. The results showed that AA-I exposure increased the contents of BUN, Cr, KIM-1, NGAL, ALT and AST in serum. It increased the content of MDA, decreased the activities of SOD, GST, GSH and the content of ATP in renal tissue. Pathological changes such as inflammatory cell infiltration and mitochondrial injury occurred in renal tissue. AA-I exposure resulted in a substantial rise in the levels of BAX, Ccaspase-9, Cleaved Caspase-9, Caspase-3, Cleaved Caspase-3 and a significant decrease in mRNA and protein expression levels of Bcl-2, SIRT1, Nrf2, NQO1, HO-1 and Keap1. However, these changes were reversed by CUR intervention. In summary, AA-I exposure caused mitochondrial dysfunction and triggered apoptosis through the oxidative stress pathway. However, CUR could reduce AA-I-induced renal injury by activating the SIRT1/Nrf2/HO-1 signaling pathway.


Assuntos
Curcumina , Nefropatias , Fator 2 Relacionado a NF-E2 , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose , Ácidos Aristolóquicos/toxicidade , Caspase 3/metabolismo , Caspase 9/metabolismo , Curcumina/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Lipocalina-2 , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuína 1/metabolismo , Superóxido Dismutase/metabolismo , Proteína X Associada a bcl-2/metabolismo
16.
Front Bioeng Biotechnol ; 10: 969668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032726

RESUMO

In order to solve the problems of high complexity, many by-products, high pollution and difficult extraction of the existing adenine production process, in this study, ceramic membrane-coupled mixed cell fermentation was used to produce adenine while reducing the synthesis of by-products and simplifying the production process of adenine. Nucleoside hydrolase (encoded by the rihC gene) was used to produce adenine by coordinated fermentation with the adenosine-producing bacterium Bacillus Subtilis XGL. The adenosine hydrolase (AdHy)-expressing strain Escherichia coli BL21-AdHy was successfully employed and the highest activity of the crude enzyme solution was found by orthogonal experiments at 170 W power, 42% duty cycle, and 8 min of sonication. The highest AdHy activity was found after 18 h of induction incubation. E. coli BL21-AdHy was induced for 18 h and sonicated under the above ultrasonic conditions and the resulting crude enzyme solution was used for co-fermentation of the strain and enzyme. Moreover, 15% (v/v) of the AdHy crude enzyme solution was added to fermentation of B. subtilis XGL after 35 h. Finally, the whole fermentation system was dialyzed using coupled ceramic membranes for 45 and 75 h, followed by the addition of fresh medium. In contrast, the AdHy crude enzyme solution was added after 35, 65, and 90 h of B. subtilis fermentation, with three additions of 15, 15, and 10% of the B. subtilis XGL fermentation system. The process was validated in a 5 L fermenter and 14 ± 0.25 g/L of adenine was obtained, with no accumulation of adenosine and d-ribose as by-products. The enzymatic activity of the AdHy crude solution treated with ultrasound was greatly improved. It also reduced the cellular activity of E. coli BL21-AdHy and reduced effects on bacterial co-fermentation. Membrane-coupled dialysis solved the problem of decreased yield due to poor bacterial survival and decreased viability, and eliminated inhibition of the product synthesis pathway by adenosine. The batch addition of crude enzyme broth allowed the continuous conversion of adenosine to adenine. This production method provides the highest yield of biologically produced adenine reported to date, reduces the cost of adenine production, and has positive implications for the industrial production of adenine by fermentation. And it provides a reference for producing other high-value-added products made by fermentation.

17.
PLoS One ; 17(7): e0269752, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35877608

RESUMO

We study the relationships between the real-time psychophysiological activity of professional traders, their financial transactions, and market fluctuations. We collected multiple physiological signals such as heart rate, blood volume pulse, and electrodermal activity of 55 traders at a leading global financial institution during their normal working hours over a five-day period. Using their physiological measurements, we implemented a novel metric of trader's "psychophysiological activation" to capture affect such as excitement, stress and irritation. We find statistically significant relations between traders' psychophysiological activation levels and such as their financial transactions, market fluctuations, the type of financial products they traded, and their trading experience. We conducted post-measurement interviews with traders who participated in this study to obtain additional insights in the key factors driving their psychophysiological activation during financial risk processing. Our work illustrates that psychophysiological activation plays a prominent role in financial risk processing for professional traders.


Assuntos
Comércio , Psicofisiologia , Frequência Cardíaca
18.
Drug Saf ; 45(5): 521-533, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35579815

RESUMO

INTRODUCTION: Machine learning models are increasingly applied to predict the drug development outcomes based on intermediary clinical trial results. A key challenge to this task is to address various forms of bias in the historical drug approval data. OBJECTIVE: We aimed to identify and mitigate the bias in drug approval predictions and quantify the impacts of debiasing in terms of financial value and drug safety. METHODS: We instantiated the Debiasing Variational Autoencoder, the state-of-the-art model for automated debiasing. We trained and evaluated the model on the Citeline dataset provided by Informa Pharma Intelligence to predict the final drug development outcome from phase II trial results. RESULTS: The debiased Debiasing Variational Autoencoder model achieved better performance (measured by the [Formula: see text] score 0.48) in predicting the drug development outcomes than its un-debiased baseline ([Formula: see text] score 0.25). It had a much higher true-positive rate than baseline (60% vs 15%), while its true-negative rate was slightly lower (88% vs 99%). The Debiasing Variational Autoencoder distinguished between drugs developed by large pharmaceutical firms and those by small biotech companies. The model prediction is strongly influenced by multiple factors such as prior approval of the drug for another indication, whether the trial meets the positive/negative endpoints, and the year when the trial is completed. We estimate that the debiased model generates financial value for the drug developer in six major therapeutic areas, with a range of US$763-1,365 million. CONCLUSIONS: Our analysis shows that debiasing improves the financial efficiency of late-stage drug development. From the pharmacovigilance perspective, the debiased model is more likely to identify drugs that are both safe and effective. Meanwhile, it may predict a higher probability of success for drugs with potential adverse effects (because of its lower true-negative rate), thus it must be used with caution to predict the development outcomes of drug candidates currently in the pipeline.


Assuntos
Aprovação de Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Viés , Humanos , Aprendizado de Máquina , Farmacovigilância
19.
Bioresour Technol ; 354: 127196, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460845

RESUMO

4-Hydroxyisoleucine is a promising drug for diabetes therapy; however, microbial production of 4-hydroxyisoleucine is not economically efficient because of the carbon loss in the form of CO2. This study aims to achieve de novo synthesis of 4-hydroxyisoleucine with minimised carbon loss in engineered Escherichia coli. Initially, an L-isoleucine-producing strain, ILE-5, was established, and the 4-hydroxyisoleucine synthesis pathway was introduced. The flux toward α-ketoglutarate was enhanced by reinforcing the anaplerotic pathway and disrupting competitive pathways. Subsequently, the metabolic flux for 4-hydroxyisoleucine synthesis was redistributed by dynamically modulating the α-ketoglutarate dehydrogenase complex activity, achieving a 4-hydroxyisoleucine production of 16.53 g/L. Finally, carbon loss was minimised by employing the Weimberg pathway, resulting in a 24.5% decrease in sugar consumption and a 31.6% yield increase. The 4-hydroxyisoleucine production by strain IEOH-11 reached 29.16 g/L in a 5-L fermenter. The 4-hydroxyisoleucine yield (0.29 mol/mol sugar) and productivity (0.91 g/(L⋅h)) were higher than those previously reported.


Assuntos
Corynebacterium glutamicum , Xilose , Carbono/metabolismo , Corynebacterium glutamicum/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Isoleucina/análogos & derivados , Engenharia Metabólica , Xilose/metabolismo
20.
Biotechnol Bioeng ; 119(1): 89-101, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612520

RESUMO

Compatible solutes are key for the ability of halophilic bacteria to resist high osmotic stress. They have received wide attention from researchers for their excellent osmotic protection properties. Hydroxyectoine is a particularly important compatible solute, but its production by microbes faces several challenges, including low titer/yield, the presence of the byproduct ectoine, and the requirement of high salinity. Here, we aimed to metabolically engineer Escherichia coli to efficiently produce hydroxyectoine in the absence of osmotic stress without accumulating the byproduct ectoine. First, combinatorial optimization of the expression strength of key genes in the ectoine synthesis module and hydroxyectoine synthesis module was conducted. After optimization of the expression of these genes, 12.12 g/L hydroxyectoine and 0.24 g/L ectoine were obtained at 36 h in shake-flask fermentation with the addition of the co-substrate α-ketoglutarate. Further optimization of the addition of α-ketoglutarate achieved the sole production of hydroxyectoine (i.e., no ectoine accumulation), indicating that the supply of α-ketoglutarate is critically important for sole hydroxyectoine production. Finally, quorum sensing-based auto-regulation of intracellular α-ketoglutarate pool was implemented as an alternative to α-ketoglutarate addition by coupling the expression of sucA with the esaI/esaR circuit, which led to 14.93 g/L hydroxyectoine with a unit cell yield of 1.678 g/g and no ectoine accumulation in the absence of osmotic stress. This is the highest reported titer of sole hydroxyectoine production under salinity-free fermentation to date.


Assuntos
Diamino Aminoácidos/metabolismo , Escherichia coli , Engenharia Metabólica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Cetoglutáricos/metabolismo , Pressão Osmótica , Percepção de Quorum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...